Skip to contents

Bugs model for a Binomial response \(X\) in a single trial: \(X \sim \mathcal{B}(n=1, p) = \mathcal{Bernoulli}(p)\).

Usage

bern_bugs(nodename, nodesintercept, parentnames, parentcoefs)

bern_bugsGroup(nodename, nodesintercept, parentnames, parentcoefs, sigma_alpha)

Arguments

nodename

character string of response variable name.

nodesintercept

overall mean of response. Parameter from fixed-effects intercept.

parentnames

single character string (for one parent) or vector of characters (for multiple parent nodes) with parent node (predictor variables) names.

parentcoefs

overall slope for each predictor (parent node) variable (fixed-effects).

sigma_alpha

between-group variance. Parameter from random-effects intercept.

Value

Bugs model returned as stdout.

Functions

  • bern_bugsGroup(): Bugs code for Bernoulli response with varying intercept

Examples

bern_bugs(nodename = "a",
          parentnames = c("b", "c"),
          nodesintercept = c(0.318077),
          parentcoefs = list("b"=c(b=0.3059395),
                             "c"=c(c=0.5555)))
#> a ~ dbern(p.a) # Bernoulli response
#> logit(p.a) <- 0.318077 + 0.3059395*b + 0.5555*c # logistic regression