Internal wrapper to INLA and are called from fitAbn.bayes
and buildScoreCache.bayes
.
Usage
calc.node.inla.glmm(
child.loc = NULL,
dag.m.loc = NULL,
data.df.loc = NULL,
data.dists.loc = NULL,
ntrials.loc = NULL,
exposure.loc = NULL,
compute.fixed.loc = NULL,
mean.intercept.loc = NULL,
prec.intercept.loc = NULL,
mean.loc = NULL,
prec.loc = NULL,
loggam.shape.loc = NULL,
loggam.inv.scale.loc = NULL,
verbose.loc = FALSE,
nthreads = NULL
)
Arguments
- child.loc
index of current child node.
- dag.m.loc
dag as matrix.
- data.df.loc
data df,
- data.dists.loc
list of distributions.
- ntrials.loc
rep(1,dim(data.df)[1])
.- exposure.loc
rep(1,dim(data.df)[1])
.- compute.fixed.loc
TRUE.
- mean.intercept.loc
the prior mean for all the Gaussian additive terms for each node. INLA argument
control.fixed=list(mean.intercept=...)
andcontrol.fixed=list(mean=...)
.- prec.intercept.loc
the prior precision for all the Gaussian additive term for each node. INLA argument
control.fixed=list(prec.intercept=...)
andcontrol.fixed=list(prec=...)
.- mean.loc
the prior mean for all the Gaussian additive terms for each node. INLA argument
control.fixed=list(mean.intercept=...)
andcontrol.fixed=list(mean=...)
. Same asmean.intercept.loc
.- prec.loc
the prior precision for all the Gaussian additive term for each node. INLA argument
control.fixed=list(prec.intercept=...)
andcontrol.fixed=list(prec=...)
. Same asprec.intercept.loc
.- loggam.shape.loc
the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument
control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))
.- loggam.inv.scale.loc
the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument
control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))
.- verbose.loc
FALSE to not print additional output.
- nthreads
number of threads to use for INLA. Default is
fit.control[["ncores"]]
orbuild.control[["ncores"]]
which is the number of cores specified incontrol
and defaults to 1.
Value
If INLA failed, FALSE or an error is returned. Otherwise, the direct output from INLA is returned.
See also
Other Bayes:
buildScoreCache()
,
calc.node.inla.glm()
,
fitAbn()
,
getmarginals()